

Certified Irrigation Contractor Examination Equations

Basic and non-irrigation equations and conversions are assumed to be known by candidates. All citations refer to <u>Landscape Irrigation Contractor</u>, Irrigation Association. Oct. 2014. The equations are presented in the latest IA format and may appear different from those presented in the reference material.

1 cubic foot of water = 7.48 gallons

1 acre-inch = 27,154 gallons

1 acre-foot = 325,848 gallons

$H_{v} = \frac{V^{2}}{2 \times g}$	Eq. 4-1	Bhp = $\frac{\text{Whp}}{(E_p / 100)} = \frac{Q \times H}{3,960 \times (E_p / 100)}$	Eq. 4-3
$NPSHA = H_a - H_s - H_f - H_{vp}$	Eq. 4-2	AR {in./h} = $\frac{231 \text{ x emitter flow rate {gph}}}{\text{emitter spacing {in}x row spacing {in}}}$	Eq. 7-1
RT $\{h\} = \frac{\text{Daily waterneed } \{\text{in.}\}}{\text{AR } \{\text{in.} / h\}}$	Eq. 7-2	Left blank intentionally.	
$ET_{L} = ET_{o} \times K_{L}$	Eq. 11-12	$PR = \frac{1.605 \times gph}{Area}$	Eq. 11-13
$RT = \frac{IR_{gross}}{PR} \times 60$	Eq. 11-14	Left blank intentionally.	
psi = feet of head × 0.433	Eq. 6-1	feet of head = psi × 2.31	Eq. 6-2
$H_{_{f}} = 0.09019 \times \left(\frac{100}{C}\right)^{1.852} \times \frac{Q^{1.852}}{d^{4.866}}$		$F_f = P \times \frac{\Delta p}{L}$	Eq. 6-4
$Q = A \times V$	Eq. 6-5a	$Q = \frac{\left[\left(ET_{o} \times K_{L}\right) - R_{E}\right] \times A \times 0.623}{E_{a}}$	Eq. 6-6

Certified Irrigation Contractor Examination Equations

$V = I \times R$	Eq. 8-1a	$W = V \times I$	Eq. 8-4
$R = \frac{1,000 \times AVL}{}$	Eq. 8-5	$L = \frac{AVL \times 1,000}{I \times R \times 2}$	Eq. 8-6
2×L×I			Lq. 8-0
$WC = \frac{WW - DW}{DW} \times 100$	Eq. 10-1	$AW_{D} = \frac{AW}{100} \times \frac{BD_{soil}}{BD_{water}} \times D$	Eq. 10-2
$RAW = AW \times \frac{MAD}{100}$	Eq. 10-3	$\mathbf{K}_{L} = \mathbf{K}_{T} \times \mathbf{K}_{d} \times \mathbf{K}_{mc}$	Eq. 10-4a
$\mathbf{K}_{L} = \mathbf{K}_{P} \times \mathbf{K}_{d} \times \mathbf{K}_{mc}$	Eq. 10- 4b	Left blank intentionally	
Upwind distance =< 0.65,	Eq. 11-1	$PR_{net} = \frac{3.66 \times V_{avg}}{t_{R} \times A_{CD}}$	Eq. 11-2
then the wind is over 5 mph			
$DU_{lq} = \frac{LQ_{avg}}{V_{avg}}$	Eq. 11-3	$SM = \frac{1}{0.4 + (0.6 \times DU_{lq})}$	Eq. 11-4
$RT_{lower} = 60 \times \frac{Water need}{PR}$	Eq. 11-5	$RT_{upper} = RT_{lower} \times SM$	Eq. 11-6
$PR = \frac{96.3 \times Q}{A}$	Eq. 11-7	$PR = \frac{96.3 \times Q}{A}; A = S_r \times S_s$	Eq. 11-8
$PR = \frac{96.3 \times Q}{A}$ $PR = \frac{96.3 \times Q}{0.866 \times S_s^2}$	Eq. 11-9	$PR = \frac{96.3 \times Q}{0.8 \times D_{t} \times S_{s}}$	Eq. 11-10
$d_{max} = AW \times RZ \times MAD$	Eq. 11-11	$Selling Price = \\ Cost \\ \hline 1 - Desired profit percentage{decimal}$	Eq. 12-1