RQ Irrigation assocation CERTIFICATION PROGRAM Certified Irrigation Contractor Examination Equations

Basic and non-irrigation equations and conversions are assumed to be known by candidates. All citations refer to Landscape Irrigation Contractor, Irrigation Association. Oct. 2014. The equations are presented in the latest IA format and may appear different from those presented in the reference material.

1 cubic foot of water $=7.48$ gallons
1 acre-inch $=27,154$ gallons
1 acre-foot $=325,848$ gallons

$H_{v}=\frac{V^{2}}{2 \times g}$	Eq. 4-1	$\text { Bhp }=\frac{\text { Whp }}{\left(E_{p} / 100\right)}=\frac{Q \times H}{3,960 \times\left(E_{p} / 100\right)}$	$\begin{aligned} & \text { Eq. } \\ & 4-3 \end{aligned}$
NPSHA $=\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{f}}-\mathrm{H}_{v p}$	Eq. 4-2	$\operatorname{AR}\{\mathrm{in} . / \mathrm{h}\}=\frac{231 \times \text { emitter flow rate }\{\mathrm{gph}\}}{\text { emitter spacing }\{\mathrm{in}\} \mathrm{x} \text { row spacing }\{\mathrm{in}\}}$	$\begin{aligned} & \text { Eq. } \\ & 7-1 \end{aligned}$
$\text { RT }\{\mathrm{h}\}=\frac{\text { Daily waterneed }\{\mathrm{in} .\}}{A R\{\mathrm{in} . / \mathrm{h}\}}$	Eq. 7-2	Left blank intentionally.	
$E T_{L}=E T_{0} \times \mathrm{K}_{\mathrm{L}}$	$\begin{aligned} & \text { Eq. } \\ & \text { 11-12 } \end{aligned}$	$\mathrm{PR}=\frac{1.605 \times \mathrm{gph}}{\text { Area }}$	Eq. $11-13$
$\mathrm{RT}=\frac{\mathrm{IR} \text { gross }}{\mathrm{PR}} \times 60$	$\begin{aligned} & \hline \text { Eq. } \\ & \text { 11-14 } \end{aligned}$	Left blank intentionally.	
$\mathrm{psi}=$ feet of head $\times 0.433$	Eq. 6-1	feet of head $=$ psi $\times 2.31$	$\begin{aligned} & \text { Eq. } \\ & 6-2 \end{aligned}$
$H_{f}=0.09019 \times\left(\frac{100}{C}\right)^{1.852} \times \frac{Q^{1.852}}{d^{4.866}}$	Eq. 6-3	$F_{f}=P \times \frac{\Delta p}{L}$	$\begin{aligned} & \text { Eq. } \\ & 6-4 \end{aligned}$
$\mathrm{Q}=\mathrm{A} \times \mathrm{V}$	$\begin{aligned} & \text { Eq. } \\ & 6-5 a \end{aligned}$	$\mathrm{Q}=\frac{\left[\left(\mathrm{ET}_{\mathrm{o}} \times \mathrm{K}_{\mathrm{L}}\right)-\mathrm{R}_{\mathrm{E}}\right] \times \mathrm{A} \times 0.623}{\mathrm{E}_{\mathrm{a}}}$	$\begin{aligned} & \mathrm{Eq.} \\ & \text { 6-6 } \end{aligned}$

CERTIFICATION PROGRAM

 Certified Irrigation Contractor Examination Equations| $\mathrm{V}=1 \times \mathrm{R}$ | Eq. 8-1a | $\mathrm{W}=\mathrm{V} \times \mathrm{l}$ | Eq. 8-4 |
| :---: | :---: | :---: | :---: |
| $\mathrm{R}=\frac{1,000 \times \mathrm{AVL}}{2 \times \mathrm{L} \times 1}$ | Eq. 8-5 | $\mathrm{L}=\frac{\operatorname{AVL} \times 1,000}{\mathrm{I} \times \mathrm{R} \mathrm{x} 2}$ | Eq. 8-6 |
| $W C=\frac{W W-D W}{D W} \times 100$ | Eq. 10-1 | $A W_{D}=\frac{A W}{100} \times \frac{B D_{\text {soil }}}{B D_{\text {water }}} \times D$ | Eq. 10-2 |
| $\text { RAW }=A W \times \frac{M A D}{100}$ | Eq. 10-3 | $\mathrm{K}_{\mathrm{L}}=\mathrm{K}_{\mathrm{T}} \times \mathrm{K}_{\mathrm{d}} \times \mathrm{K}_{\mathrm{mc}}$ | Eq. 10-4a |
| $\mathrm{K}_{\mathrm{L}}=\mathrm{K}_{\mathrm{p}} \times \mathrm{K}_{\mathrm{d}} \times \mathrm{K}_{\mathrm{mc}}$ | $\begin{aligned} & \text { Eq. } 10- \\ & \text { 4b } \end{aligned}$ | Left blank intentionally | |
| $\begin{aligned} & \frac{\text { Upwind distance }}{\text { Downwind distance }}=<0.65 \text {, } \\ & \text { then the wind is over } 5 \mathrm{mph} \end{aligned}$ | Eq. 11-1 | $P R_{\text {net }}=\frac{3.66 \times V_{\text {avg }}}{t_{R} \times A_{c D}}$ | Eq. 11-2 |
| $\mathrm{DU}_{\mathrm{lq}}=\frac{\mathrm{LQ}_{\mathrm{avg}}}{\mathrm{~V}_{\mathrm{avg}}}$ | Eq. 11-3 | $\mathrm{SM}=\frac{1}{0.4+\left(0.6 \times \mathrm{DU}_{\mathrm{lq}}\right)}$ | Eq. 11-4 |
| $\mathrm{RT}_{\text {lower }}=60 \times \frac{\text { Water need }}{P R}$ | Eq. 11-5 | $R \mathrm{~T}_{\text {upper }}=\mathrm{RT}_{\text {lower }} \times \mathrm{SM}$ | Eq. 11-6 |
| $\mathrm{PR}=\frac{96.3 \times \mathrm{Q}}{\mathrm{~A}}$ | Eq. 11-7 | $\mathrm{PR}=\frac{96.3 \times \mathrm{Q}}{\mathrm{A}} ; \mathrm{A}=\mathrm{S}_{\mathrm{r}} \times \mathrm{S}_{\mathrm{s}}$ | Eq. 11-8 |
| $\mathrm{PR}=\frac{96.3 \times \mathrm{Q}}{0.866 \times \mathrm{S}_{\mathrm{s}}^{2}}$ | Eq. 11-9 | $P R=\frac{96.3 \times Q}{0.8 \times D_{t} \times S_{s}}$ | Eq. 11-10 |
| $\mathrm{d}_{\text {max }}=A W \times \mathrm{RZ} \times \mathrm{MAD}$ | $\begin{aligned} & \text { Eq. } \\ & \text { 11-11 } \end{aligned}$ | $\begin{aligned} & \text { Selling Price }=\text { Cost } \\ & \hline 1-\text { Desired profit percentage }\{\text { decimal }\} \end{aligned}$ | Eq. 12-1 |

